基于扇形趋利果蝇优化算法改进的FS-K聚类算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16055/j.issn.1672-058X.2021.0005.010

基于扇形趋利果蝇优化算法改进的FS-K聚类算法

引用
针对果蝇算法对高维函数收敛精度低的缺点,提出了一种改进的基于扇形搜索的果蝇算法(Fan search-Fruit Fly Optimization Algorithm,FS-FOA),该算法在原果蝇FOA算法的基础上改进了果蝇群体的搜索路径,并赋予果蝇个体趋利性,使更多的果蝇个体朝着味道浓度更大的方向前进,使果蝇群体的搜索方向有更多的选择性,增加果蝇算法在处理高维函数问题上的收敛速度和收敛精度;并将改进的FS-FOA算法与K-means聚类相结合,提出一种FS-K聚类算法,与原K-means聚类和原果蝇(FOA)算法进行对比实验,引入5个经典的测试函数对原FOA算法和FS-FOA算法寻优结果进行测试,结果表明采用FS-FOA算法具有更高的收敛精度;引入5个UCI公共数据集对改进FS-K聚类算法和原K-means算法、SOM聚类算法、FCM聚类算法进行测试,结果表明FS-K聚类算法具有更好的聚类效果.

果蝇算法;扇区搜索;FS-K聚类算法

38

TP181(自动化基础理论)

安徽省科技重大专项项目201903a07020013

2021-10-26(万方平台首次上网日期,不代表论文的发表时间)

共7页

61-67

相关文献
评论
暂无封面信息
查看本期封面目录

重庆工商大学学报(自然科学版)

1672-058X

50-1155/N

38

2021,38(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn