非奇异M-矩阵及其逆矩阵Hadamard积最小特征值的新下界
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16055/j.issn.1672-058X.2019.0006.003

非奇异M-矩阵及其逆矩阵Hadamard积最小特征值的新下界

引用
针对非奇异M-矩阵及其逆矩阵Hadamard积的最小特征值问题,首先,回顾了已有文献应用矩阵的特征值存在域定理和逆矩阵元素的估计式;其次,结合M-矩阵Hadamard积的相关性质特征及不等式的构造、放缩技巧,给出了非奇异M-矩阵与其逆矩阵是双随机矩阵的Hadamard积的最小特征值下界τ(A°A-1)的一个仅与A矩阵的元素相关的估计式,推广了已有文献的结果;最后,用数值例子表明所给估计式的下界比已有结果得到的下界更精确.

M-矩阵、Hadamard积、特征值存在域定理、下界

36

O151.21(代数、数论、组合理论)

云南省科技厅应用基础研究项目2015FD050;文山学院科学研究项目15WSY11,2018Y04

2019-12-11(万方平台首次上网日期,不代表论文的发表时间)

共4页

14-17

相关文献
评论
暂无封面信息
查看本期封面目录

重庆工商大学学报(自然科学版)

1672-058X

50-1155/N

36

2019,36(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn