基于LDA模型与语义网络对评论文本挖掘研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16055/j.issn.1672-058X.2019.0004.002

基于LDA模型与语义网络对评论文本挖掘研究

引用
通过主题模型与语义网络对旅游电商中的评论文本进行挖掘,从而引导消费者与商家对评论信息作出重要决策;提出一种基于LDA(Latent Dirichlet Allocation,LDA)主题聚类与语义网络模型(LDAtopic clustering and semantic network model,LTC-SNM)的方法对酒店在线评论文本进行研究;获取在线评论文本进行数据预处理,使用Word2vec生成词向量,利用机器学习算法对评论文本进行情感分类;通过LDA主题模型对分类后的文本进行聚类,生成酒店的特征主题词;通过ROSTCM将特征主题词与所修饰的情感词生成语义网络,缓解了挖掘文本信息的复杂性;实验结果表明:提出的LTC-SNM文本挖掘方法使得在线用户评价的主题更具表达性.

LDA主题模型、文本聚类、语义关联、情感分析

36

TP391.1(计算技术、计算机技术)

重庆市教委教改项目092055;重庆市教委科技项目KJ098820

2019-09-05(万方平台首次上网日期,不代表论文的发表时间)

共8页

9-16

相关文献
评论
暂无封面信息
查看本期封面目录

重庆工商大学学报(自然科学版)

1672-058X

50-1155/N

36

2019,36(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn