基于卷积神经网络的病理细胞核分割
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16055/j.issn.1672-058X.2019.0003.012

基于卷积神经网络的病理细胞核分割

引用
针对病理图像中细胞核的精准分割问题,结合全卷积网络框架和高分辨率网络框架的特点,提出一种卷积网络对细胞核进行自动精准地分割;基于稀疏非负矩阵分解的方法将具有严重颜色分布差异的病理图像进行颜色分布归一化,以归一化后的图像为输入,利用所提出的卷积网络对细胞核进行分割;该网络通过减少下采样算子的使用,使图像信息在前向计算过程中不会过分丢失,并使用扩张卷积扩大深层神经元的局部感受野尺度大小;所采用的分割方案在2017年MICCAI病理数字图像分割数据集中达到0.848的平均dice分数;实验表明,融合全卷积网络框架和高分辨率网络框架的卷积网络在病理图像中实现了细胞核自动精准的分割,可以有效减轻影像医师的工作负担.

病理图像、细胞核分割、卷积神经网络、颜色归一化

36

R312;TP183(医用一般科学)

2019-06-12(万方平台首次上网日期,不代表论文的发表时间)

共5页

67-71

相关文献
评论
暂无封面信息
查看本期封面目录

重庆工商大学学报(自然科学版)

1672-058X

50-1155/N

36

2019,36(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn