基于B2C帐号在线评论特征的聚类分析——以京东商城为例
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于B2C帐号在线评论特征的聚类分析——以京东商城为例

引用
基于B2C帐号在线评论数据对帐号进行聚类,聚类算法采用EM、SimpleKMeans,并使用基于似然度的聚类算法评估准则作为聚类算法簇个数选取和算法比较依据.最终,选取EM算法并得到5类人群.得结论:站在帐号满意度的层面,京东商城的运营状况基本良好,但是,也有大概十分之一的高级账户存在流失的潜在风险;京东商城正在培育出一批忠诚度高、消费能力旺盛的客户群;评论字数较长的负面评论更易引起关注.

B2C帐号、商品在线评论特征、EM算法、似然度的聚类评估准则

31

G350.7(情报学、情报工作)

国家“十一五”科技支撑计划重大项目2006BAJ05A06;电子商务及供应链系统重庆市重点实验室专项基金项目2012ECSC0213;重庆工商大学创新型项目yjscxx2013-025-09,yjscxx2012-037-036,yjscxx2012-037-037

2014-06-17(万方平台首次上网日期,不代表论文的发表时间)

共6页

35-40

相关文献
评论
暂无封面信息
查看本期封面目录

重庆工商大学学报(自然科学版)

1672-058X

50-1155/N

31

2014,31(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn