一种改进的K-均值聚类算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1672-058X.2009.02.010

一种改进的K-均值聚类算法

引用
为了改进K-means聚类算法的不足,把混合粒子群优化算法引入到K-means聚类算法中,重新选取编码方式并构造适应度函数,在此基础上提出了一种改进的K-means聚类算法;通过两个经典数据集的测试,实验结果表明:改进的算法比K-means算法具有更好的全局寻优能力、更快的收敛速度,且其解的精度更高对初始聚类中心的敏感度降低.

混合粒子群优化算法、K-均值、聚类算法

26

TP301.6(计算技术、计算机技术)

重庆市科委自然科学基金计划资助项目CSTC.2007BB2372

2009-06-17(万方平台首次上网日期,不代表论文的发表时间)

共4页

144-147

相关文献
评论
暂无封面信息
查看本期封面目录

重庆工商大学学报(自然科学版)

1672-058X

50-1155/N

26

2009,26(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn