基于EMD-GRU的高速公路行程时间组合预测模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.21656/1000-0887.410165

基于EMD-GRU的高速公路行程时间组合预测模型

引用
考虑到高速公路行程时间影响因素繁多且行程时间序列非线性、非平稳特征显著,设计了基于经验模态分解和GRU神经网络的高速公路行程时间组合预测模型.首先,利用高速公路收费数据中车辆进出高速公路的时间信息获取路段行程时间序列;然后,利用经验模态分解算法,将复杂的行程时间序列分解为若干时间尺度不同、相对平稳的本征模态函数分量和残差分量;接着,使用GRU神经网络对各本征模态函数分量和残差分量进行预测与集成操作.实例分析表明:经验模态分解可有效提高LSTM、GRU神经网络的预测精度;在相同参数设置的情况下,GRU神经网络的预测精度优于LSTM神经网络.

智能交通、组合预测、行程时间、经验模态分解、GRU神经网络

42

U491(交通工程与公路运输技术管理)

教育部人文社会科学研究项目;重庆市社会科学规划项目

2021-05-27(万方平台首次上网日期,不代表论文的发表时间)

共8页

405-412

相关文献
评论
暂无封面信息
查看本期封面目录

应用数学和力学

1000-0887

50-1060/O3

42

2021,42(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn