基于相关分析和偏最小二乘回归的黄绵土土壤全氮和碱解氮含量的高光谱预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于相关分析和偏最小二乘回归的黄绵土土壤全氮和碱解氮含量的高光谱预测

引用
以采取植被恢复措施的陕西省吴起县为研究区,实地采集24个土壤剖面不同层次的黄绵土土样100个,在进行土壤样本全氮(TN)和碱解氮(AHN)含量及实验室反射光谱数据测量和分析的基础上,用相关分析(CA)结合偏最小二乘回归(PLS)方法建立黄绵土土壤TN和AHN含量的校正模型,并用独立样本对校正模型进行验证.结果表明:利用6种光谱变换方式建立的校正模型中,微分光谱建立的校正模型是预测研究区土壤TN含量的最佳模型,校正和验证R2分别为0.929和0.935,均方根误差(RMSE)分别为0.045和0.047 g·kg-1,相对预测偏差(RPD)为3.12;而归一化变换建立的校正模型是预测土壤AHN含量的最佳模型,校正和验证R2分别为0.873和0.773,RMSE分别为9.946和16.204 mg·kg-1,RPD为1.538.所建立的全氮预测模型可以对0~40 cm土层的TN进行有效预测,而碱解氮的预测模型对同一深度只能进行粗略预测.本研究为采取植被恢复措施的退化生态系统区黄绵土土壤全氮的快速预测提供了一种较好的方法,但是对于碱解氮的准确、快速预测,需要进一步研究.

黄绵土、全氮、碱解氮、高光谱、植被恢复

26

S153.6(土壤学)

国家高技术研究发展计划项目2013AA102401-2、国家科技支撑计划项目2012BAH29B04-00和河南省科技攻关计划项目132102110210资助.

2015-08-31(万方平台首次上网日期,不代表论文的发表时间)

2107-2114

相关文献
评论
暂无封面信息
查看本期封面目录

应用生态学报

1001-9332

21-1253/Q

26

2015,26(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn