基于Mask R-CNN结合边缘分割的颗粒物图像检测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.5768/JAO202344.0102005

基于Mask R-CNN结合边缘分割的颗粒物图像检测

引用
对颗粒物的尺寸检测是生产中重要的环节,使用相机采集图像并处理是常用的非接触检测方法.围绕颗粒物的识别与尺寸检测需求,选用沙粒为检测对象,提出了一种改进颗粒物边界掩膜的Mask R-CNN模型.该模型结合经典的边缘检测技术,并利用深度学习模型预测掩膜,根据边缘分割的结果来得到更高精度的掩膜.使用DenseNet作为检测网络的主干网络,使得整体网络参数量更少,并利用通道注意力机制加强网络的特征提取能力.实验结果表明,改进的网络可以提高检测的精度,且结合图像处理的方式能够改善掩膜尺寸检测的准确度,为颗粒物的工业检测提供了一种有意义的方法.

颗粒物检测、深度学习、图像分割、机器视觉、尺寸分布

44

TN911.73;TP391.4

国家自然科学基金;安徽省高校自然科学研究项目;安徽省高校自然科学研究项目

2023-02-16(万方平台首次上网日期,不代表论文的发表时间)

共11页

93-103

相关文献
评论
暂无封面信息
查看本期封面目录

应用光学

1002-2082

61-1171/O4

44

2023,44(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn