一种基于2D-CNN的激光超声表面缺陷检测方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.5768/JAO202142.0107002

一种基于2D-CNN的激光超声表面缺陷检测方法

引用
激光超声表面缺陷检测的过程中,缺陷的定量表征通常依赖于操作者的判断,易受到人为因素干扰,致使检测结果不稳定.针对这一问题,提出一种基于图像识别的二维卷积神经网络(2D-CNN)的缺陷自动分类检测方法.利用有限元方法模拟激光超声检测过程,并采集超声信号数据用于训练分类模型;使用连续小变换(CWT)处理超声信号得到小波时频图,以小波时频图作为输入训练卷积神经网络(CNN)分类模型,实现对表面缺陷深度的自动分类.验证结果表明:提出的检测方法能够对不同深度的缺陷准确分类,测试的平均准确率达到97.3%;构建的CNN分类模型能够自主学习输入图像的缺陷特征并完成分类,提高了检测结果稳定性,为激光超声缺陷检测的自动化分析处理提供了新的思路.

激光超声检测、缺陷分类、卷积神经网络、连续小波变换

42

TN247(光电子技术、激光技术)

大连理工大学中央高校基本科研业务费专项项目DUT15ZD110

2021-04-02(万方平台首次上网日期,不代表论文的发表时间)

共8页

149-156

相关文献
评论
暂无封面信息
查看本期封面目录

应用光学

1002-2082

61-1171/O4

42

2021,42(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn