一种基于双分支改良编解码器的图像去噪算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.5768/JAO202041.0502004

一种基于双分支改良编解码器的图像去噪算法

引用
针对传统图像去噪算法多噪声去除难,深层卷积神经网络去噪模型网络复杂、训练时间长等问题,提出一种基于自编码器结构的双分支改良编解码网络,实现高效图像去噪.双分支结构之一采用降-升采样实现点噪声消除,另一分支专注于宏观的图像修复和伪像去除,后端利用残差结构进行整合,实现数字图像混合噪声去噪.实验结果显示:对于含有标准差为15,均值为0的高斯噪声、噪声密度为5%的椒盐噪声和散粒噪声的混合噪声图像测试集,实验去噪效果相较于输入混合噪声图像峰值信噪比,平均提升了5.3%.与12层全卷积神经网络相比,去噪效果相当,训练速度提升了25.4%,体现了其"轻量级"的优点.实验表明:该方法相较于深层卷积神经网络,训练速度快,网络简单;相较于传统图像去噪算法,噪声去除效果也较为明显.该算法可应用于轻量级视觉平台后端去噪.

图像去噪、双分支编解码、残差、轻量级

41

TN201;TP391.4(光电子技术、激光技术)

国防科工局重大基础科研项目JCKY2016201A601

2020-10-15(万方平台首次上网日期,不代表论文的发表时间)

共9页

956-964

相关文献
评论
暂无封面信息
查看本期封面目录

应用光学

1002-2082

61-1171/O4

41

2020,41(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn