一种基于粒子群优化的高斯混合灰度图像增强算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.5768/JAO201738.0402003

一种基于粒子群优化的高斯混合灰度图像增强算法

引用
提出一种采用粒子群优化(PSO)的高斯混合灰度图像增强算法.该算法首先采用高斯混合模型(GMM)对输入图像的灰度直方图建模,并采用模型中高斯成分的有效交点来分割直方图.随后,该算法将每个直方图区间的灰度值转换到合适的输出区间,生成增强后的灰度图像,其中转换函数由输入直方图区间的高斯成分和累积分布经过粒子群优化后的参数决定.实验结果显示,该方法生成的图像视觉效果较好,对原图像和纹理细节丰富图像分别进行图像增强,增强后的图像信息熵分别是4.746 6和7.952 6,灰度平均梯度为6.970 6和37.386 1.

图像处理、灰度图像增强、高斯混合模型、粒子群优化

38

TN911.73

国家国际科技合作专项资助2015DFA10670;陕西省科技厅资助项目2015KJXX-62

2017-10-12(万方平台首次上网日期,不代表论文的发表时间)

共7页

592-598

相关文献
评论
暂无封面信息
查看本期封面目录

应用光学

1002-2082

61-1171/O4

38

2017,38(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn