10.3969/j.issn.1001-4268.2023.01.009
一种基于鞅差散度的纵向数据降维方法
变量间的相关性和同一个体多次观测之间的相关性是纵向数据集两大固有特点,这两种相关性包含纵向数据的许多重要信息.本文借鉴矩阵值数据的降维思想,利用这两种相关性对纵向数据进行降维,提出一种基于鞅差散度的充分维数折叠降维方法.理论上,该降维准则在总体形式下能找到中心均值维数折叠子空间,实现时间和变量两个维度的同时降维,基于其样本形式得到的中心均值维数折叠子空间的估计具有√n相合性.算法上,通过引入Kronecker乘积假定,将降维过程转化为带约束的低维优化问题,从而可以用成熟的非线性优化算法快速求解.进一步地,本文提出一种相合的BIC准则自适应地确定结构维数.相较于文献中的降维方法,数值模拟表明所提方法不仅能快速实现,而且在中心均值维数折叠子空间的估计和结构维数的确定上有更高的准确度.最后,本文通过原发性胆汁性肝硬化临床数据的实证分析验证了所提方法的有效性.
纵向数据、鞅差散度、充分性降维、维数折叠、中心均值子空间
39
O212.4(概率论与数理统计)
国家自然科学基金;上海市科技启明星项目;国家社会科学基金;江苏高校青蓝工程资助
2023-03-28(万方平台首次上网日期,不代表论文的发表时间)
共27页
132-158