利用PLSR-DNN耦合模型预测TBM净掘进速率
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16285/j.rsm.2020.0164

利用PLSR-DNN耦合模型预测TBM净掘进速率

引用
科学预测隧道掘进机(TBM)净掘进速率,对于隧道(洞)工程施工方法选择、施工进度安排以及成本估计具有重要意义.鉴于TBM施工过程具有高度非线性、模糊性和复杂性等特征,为提高TBM净掘进速率的预测精度和计算效率,采用偏最小二乘回归(PLSR)提取影响参数主成分,再利用深度神经网络(DNN)进行训练预测,提出了一种基于PLSR-DNN耦合方法的TBM净掘进速率预测模型.基于兰州水源地建设工程输水隧洞双护盾TBM施工实测数据,选择岩石单轴抗压强度、单轴抗拉强度、刀盘推力、刀盘转速、岩体完整性系数和岩石耐磨性指数,共6个影响参数,验证了模型预测的合理性,并对不同预测方法的拟合精度和预测精度进行了对比分析.研究结果表明:(1)偏最小二乘回归可有效克服自变量之间的多重共线性问题,将提取的主成分作为深度神经网络的输入层进行训练,简化了神经网络结构;(2)PLSR-DNN耦合预测模型避免了过拟合与拟合不足问题,具有收敛速度快,求解稳定和拟合精度高等特点;(3)PLSR-DNN耦合预测模型平均相对拟合误差2.96%,平均相对预测误差3.27%,其拟合精度和预测精度均明显高于偏最小二乘回归模型、BP神经网络模型以及支持向量回归(SVR)模型.

隧道掘进机、净掘进速率、偏最小二乘回归、深度神经网络、耦合预测模型

42

TU94;TV554(地下建筑)

国家自然科学基金;河南省重点研发与推广专项;盾构及掘进技术国家重点实验室开放课题

2021-03-24(万方平台首次上网日期,不代表论文的发表时间)

共10页

519-528

相关文献
评论
暂无封面信息
查看本期封面目录

岩土力学

1000-7598

42-1199/O3

42

2021,42(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn