基于CReLU和FPN改进的SSD舰船目标检测
在遥感图像中,舰船目标具有目标尺寸较小、形状细长、多个目标紧密排列、类间相似度高等特点,现有的深度学习目标检测算法对舰船小目标的检测精度不高,易发生错检、漏检情况.为了更有效地利用遥感图像信息,提高小目标检测精度,构建了舰船数据集SDNGV,提出基于串行修正线性单元CReLU和特征金字塔网络(FPN)改进的单射探测器(SSD)舰船目标检测识别方法.首先,在SSD网络的浅层添加CReLU,提升其浅层特征的传递效率;然后,采用FPN从网络的深层到浅层逐级融合SSD中用于检测的多尺度特征图,提升网络的定位精度和分类精度.实验表明,所提目标检测算法具有较好的检测精度,改进方法具有明显的效果,在舰船小目标的检测上有10%的检测精度提升.
目标检测、舰船检测、深度学习、卷积神经网络
41
TP391.4;TH39(计算技术、计算机技术)
国家自然科学基金61333017
2020-09-04(万方平台首次上网日期,不代表论文的发表时间)
共8页
183-190