基于随机子空间与多储备池的分类方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于随机子空间与多储备池的分类方法

引用
提出一种基于回声状态网络(echo state networks,ESNs)的分类方法,借鉴集成学习的思想,采用随机子空间方法产生特征子集,对应特征子集生成多个储备池.利用回声状态网络仅需训练储备池至输出层的权值这一优点,将分类集成阶段融合于多储备池回声状态网络的学习过程中.基于标准数据集和模拟电路故障诊断的实验验证结果表明,与标准回声状态网络等方法相比,该方法有更低的分类错误率.

回声状态网络、特征选择、分类器集成

32

TP391(计算技术、计算机技术)

教育部高等学校博士学科点专项科研基金20092302110013;教育部新世纪优秀人才支持计划NCET-10-0062

2012-03-30(万方平台首次上网日期,不代表论文的发表时间)

共6页

2487-2492

相关文献
评论
暂无封面信息
查看本期封面目录

仪器仪表学报

0254-3087

11-2179/TH

32

2011,32(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn