基于二次特征提取与SVM的异常步态识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于二次特征提取与SVM的异常步态识别

引用
长期以异常步态行走将导致人体足部、踝关节、大腿疼痛乃至身体骨骼疾病.针对目前普遍采用的基于计算机视觉的步态识别技术对数据采集环境要求严苛、视频图像分析受环境影响较大等问题,基于人行走时的足底压力变化特征进行步态识别,足底压力数据经由穿戴式步态采集器,可以不受环境限制且能实现较远距离的步态识别.并提出一种基于二次特征提取与支持先向量机的异常步态识别方法.该方法采用主成分分析法对从足底压力变化曲线中提取出来的步态特征进行二次提取.获取包含样本数据信息的主要特征信息,通过多分类支持向量机模型对步态进行识别.实验结果表明:该方法对异常步态的平均识别率达到92.625 5%,具有较高的识别精度.

异常步态识别、特征提取、主成分分析、支持向量机

32

TP274+.2(自动化技术及设备)

中央高校基本科研业务费CDJRC10170008

2011-07-15(万方平台首次上网日期,不代表论文的发表时间)

共5页

673-677

相关文献
评论
暂无封面信息
查看本期封面目录

仪器仪表学报

0254-3087

11-2179/TH

32

2011,32(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn