基于粒子滤波的自组织模糊神经网络算法研究
为了得到结构更加紧凑、泛化性能更强的自组织模糊神经网络,提出了基于粒子滤波(particle filter,PF)的自组织模糊神经网络训练算法.其能够对模糊规则进行自动生成和增删.文中给出了模糊规则生成准则,应用误差率下降方法作为模糊规则增删策略,删除作用不大的规则.建立了以隶属函数宽度参数为状态,以理想输出为量测的动力学模型,利用PF对参数进行了学习.最后,对两个实例进行了仿真,从仿真结果可以看出,与D-FNN、SOFNN、EKF-SOFNN等算法相比,其在结构紧凑性以及泛化性能上都得到了提高,从而证明了PF-SOFNN的有效性.
粒子滤波、自组织模糊神经网络、误差率下降、模糊规则、隶属函数
32
TN391.41(半导体技术)
2011-07-15(万方平台首次上网日期,不代表论文的发表时间)
共6页
634-639