基于深度学习的音乐情绪分类研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.7699/j.ynnu.ns-2023-022

基于深度学习的音乐情绪分类研究

引用
为解决传统音乐情感分类特征单一,导致训练效果差的问题,提出了一种多模态注意力融合网络模型,首先将执行情感分类使用的歌词和音频分离,将上下文特征提取方法与分类器相结合,从而提高特征提取效率;其次通过注意机制融合多模态特征,从而加快模型训练效率及情感分类准确率;接着提出了一种自适应孤立森林噪声方法增强模型对不均衡样本的适应性,并在一定程度上缓解模型过拟合问题.最后,将模型与LSTM、GRU、BI-LSTM、BI-GRU等模型进行仿真比较,结果表明所提模型性能最优,情绪分类准确率可达96.46%.

音乐情感、深度学习、注意机制、多模态特征、随机森林

43

TP393(计算技术、计算机技术)

保定市教育科学研究十四五规划资助项目213024

2023-04-18(万方平台首次上网日期,不代表论文的发表时间)

共5页

29-33

相关文献
评论
暂无封面信息
查看本期封面目录

云南师范大学学报(自然科学版)

1007-9793

53-1046/N

43

2023,43(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn