基于粗糙集理论的RBF神经网络在LUCC分类浅析
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1007-9793.2010.03.007

基于粗糙集理论的RBF神经网络在LUCC分类浅析

引用
将粗糙集作为神经网络的预处理单元,利用粗糙集消除冗余特征,减少神经网络的输入节点,降低了网络规模,加快了训练速度.粗糙集神经网络利用粗糙集原理进行知识的表达、推理和简化,利用神经网络的并行特点完成网络学习运算,能更有效地处理不确定、不精确及冗余的数据.结果表明,粗糙集简约后的决策信息放入RBF神经网络中进行运算,输出结果与BP网络运算结果进行对比,在运算时间和测试精度上均优于BP网络.

粗糙集、遗传算法、径向基神经网络(RBFNN)、土地利用/覆盖、遥感图像

30

TP399(计算技术、计算机技术)

2010-07-08(万方平台首次上网日期,不代表论文的发表时间)

共4页

28-31

相关文献
评论
暂无封面信息
查看本期封面目录

云南师范大学学报(自然科学版)

1007-9793

53-1046/N

30

2010,30(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn