基于高效全局上下文网络的轻量级烟火检测算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.37188/CJLCD.2022-0184

基于高效全局上下文网络的轻量级烟火检测算法

引用
针对现有烟火检测算法存在的漏检和误检问题,提出一种基于高效全局上下文网络(EGC-Net)的轻量级烟火检测新算法.该算法以轻量级目标检测网络YOLOX为基础网络,将改进的EGC-Net嵌入到YOLOX的主干特征提取网络与特征金字塔网络之间.EGC-Net由上下文建模、特征转换和特征融合3阶段结构组成,用于获得图像的全局上下文信息,建模烟火目标与其背景信息的远程依赖关系,并结合通道注意力机制学习更具判别力的视觉特征用于烟火检测.实验结果表明,本文提出的EGC-YOLOX烟火检测算法的图像级召回率为95.56%,图像级误报率为4.75%,均优于对比的其他典型轻量级算法,且速度满足实时检测的要求.该算法可在安防和消防领域推广,用于实时火灾监控和预警管理.

烟火检测、EGC-Net、YOLOX、全局上下文、注意力机制

38

TP391.4(计算技术、计算机技术)

国家自然科学基金;教育部工程研究中心开放基金;湖北省教育厅科研计划项目

2023-02-21(万方平台首次上网日期,不代表论文的发表时间)

共10页

118-127

相关文献
评论
暂无封面信息
查看本期封面目录

液晶与显示

1007-2780

22-1259/O4

38

2023,38(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn