基于多尺度细节的孪生卷积神经网络图像融合算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.37188/CJLCD.2020-0339

基于多尺度细节的孪生卷积神经网络图像融合算法

引用
图像融合将来自不同捕获条件或不同传感器的互补图像进行融合以提高图像的视觉质量.针对这一任务,本文提出一种改进的滚动引导滤波与神经网络相结合的多尺度融合算法.首先,使用孪生卷积神经网络学习图像特征,并以此获得包含源图像显著特征的权值映射图.随后,使用改进的滚动引导滤波对图像进行多尺度分解,结合信息熵使滚动引导滤波权重参数自适应化来实现多尺度自适应分解,并结合非线性映射增强图像细节信息.最后,采用局部能量与权值图相结合的自适应调整融合模式对多尺度图像进行融合.经实验对比,所提方法能够避免出现图像边缘圆晕效应,且能够更好地突出图像边缘、细节纹理特征.另外,与其他算法相比,本文所提出的算法在平均梯度、信息熵、视觉信息保真度以及空间频率等客观评价指标项上均取得了更优的性能表现.

图像处理;孪生卷积神经网络;图像融合;滚动引导滤波;多尺度图像

36

TP391.4(计算技术、计算机技术)

国家自然科学基金青年基金No.61401425.No.61602432

2021-10-25(万方平台首次上网日期,不代表论文的发表时间)

共11页

1283-1293

相关文献
评论
暂无封面信息
查看本期封面目录

液晶与显示

1007-2780

22-1259/O4

36

2021,36(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn