一种基于迁移学习的遥测数据异常检测方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3873/j.issn.1000-1328.2021.04.013

一种基于迁移学习的遥测数据异常检测方法

引用
为解决卫星遥测数据异常检测面临的数据不平衡且缺乏有标签样本的问题,提出一种基于一维卷积神经网络(1dCNN)迁移学习的异常检测方法.首先利用源域卫星的遥测数据对1dCNN进行预训练,使得模型的卷积层具有卫星状态特征的提取能力;然后将训练好的模型迁移到缺乏标签数据的目标域卫星中;利用目标域有标签样本对预训练模型进行微调,从而实现了对目标域测试集样本的异常检测.为了使1dCNN能够适应遥测数据样本的不平衡性,引入了代价敏感训练策略,建立动态损失函数,从而提升代价敏感一维卷积神经网络(cs-1dCNN)对于异常样本的识别能力.以某两个卫星的电源分系统遥测数据进行了验证,实验结果表明该异常检测迁移方法具有较好的有效性和鲁棒性.

卫星遥测数据、迁移学习、深度学习、异常检测

42

V241.9(航空仪表、航空设备、飞行控制与导航)

国家自然科学基金;创新基地实验室开放基金

2021-07-13(万方平台首次上网日期,不代表论文的发表时间)

共9页

522-530

相关文献
评论
暂无封面信息
查看本期封面目录

宇航学报

1000-1328

11-2053/V

42

2021,42(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn