面向对象的特征自动选择的建筑物信息提取
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-3177.2021.02.019

面向对象的特征自动选择的建筑物信息提取

引用
针对建筑物信息提取存在低效率、高成本的问题,提出了一种利用分离阈值算法(seperability and thresholds,SEaTH)的高精度建筑物信息提取方法.采用高分二号遥感影像,通过半自动化信息提取构建分类规则的方法对天津市西青区的建筑物信息进行提取.通过运用SEaTH算法构建知识规则,选取训练样本并输出训练样本的特征值,将输出的特征值运用SEaTH算法进行自动确定阈值和特征优选,进而采用像素对象调整优化建筑物轮廓.将基于面向对象的最邻近分类法与该方法进行了精度评价对比.结果表明,该方法在提取建筑物信息时出现的错分漏分现象较少,且总体精度和Kappa精度都要高于基于面向对象的最邻近分类法,验证了其在提取建筑物信息方面的可行性.

天津、建筑物信息、半自动化信息提取、SEaTH算法、样本特征值、建筑物轮廓优化

36

P237(摄影测量学与测绘遥感)

2021-05-26(万方平台首次上网日期,不代表论文的发表时间)

共6页

130-135

相关文献
评论
暂无封面信息
查看本期封面目录

遥感信息

1000-3177

11-5443/P

36

2021,36(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn