应用粒子群算法的遥感信息与水稻生长模型同化技术
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

应用粒子群算法的遥感信息与水稻生长模型同化技术

引用
在研究遥感信息和水稻生长模型的同化过程中,最小化遥感反演与生长模型(RiceGrow)输出的水稻生长信息差值绝对值时引入了一种新的优化算法-粒子群算法(PSO),并对比了其与模拟退火算法(SA)的优缺点;探讨了叶面积指数(LAI)和叶片氮积累量(LNA)分别作为同化参数时的同化效果.结果表明,PSO无论是从同化效率还是反演精度上都要好于SA,粒子群优化算法是一种可靠的遥感与模型同化算法;LAI和LNA作为外部同化参数时各有优势,LAI作为同化参数可获得较准确的播期及播种量,而LNA作为同化参数可获得更为准确的施氮量信息.但是LAI作为外部同化参数时的反演结果总体要优于利用LNA作为同化参数时的反演结果.利用试验资料对该技术进行了测试和检验,结果显示反演的模型初始参数的平均值与真实值的相对误差(RE)均小于2.5%,均方根误差(RMSE)为0.7-2.2,产量模拟值与实测值之间的相对误差为5%左右,模拟与实测相关指标值吻合度较高,该同化技术具有较好的适用性.从而为生长模型从单点扩展到区域尺度应用奠定了基础.

粒子群算法、RiceGrow模型、同化技术、模型参数初始化

14

TP79(遥感技术)

国家自然科学基金30900868,30871448,;教育部新世纪优秀人才支持计划NCET-08-0797

2011-01-15(万方平台首次上网日期,不代表论文的发表时间)

1226-1240

相关文献
评论
暂无封面信息
查看本期封面目录

遥感学报

1007-4619

11-3841/TP

14

2010,14(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn