生成模型学习的遥感影像半监督分类
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

生成模型学习的遥感影像半监督分类

引用
以生成模型最大似然估计为例,引入结合已标记样本和未标记样本的半监督分类方法来解决遥感影像分类中的小样本问题,应用已有的少量已标记样本初始化一个分类器,结合大量未标记样本,通过递归计算的方式对分类器进行优化,直到包含所有样本的似然函数收敛到局部极大值.通过分析遥感影像待分类类别与影像中地物类型固有特征之间的关系,设计两个在不同生成模型假设下的分类实验.结果表明,未标记样本的参与可在很大程度上提高小样本条件下的影像分类精度,但两种样本的数量应保持一个适当的比例.最后通过与在解决小样本分类问题方面有独特优势的SVM方法的分类比较,发现在小样本情况下,本文方法具有更好的应用潜力.

遥感分类、半监督学习、EM算法

14

TP751(遥感技术)

国家自然科学基金;中国近海海洋综合调查与评价专项

2011-01-15(万方平台首次上网日期,不代表论文的发表时间)

1090-1104

相关文献
评论
暂无封面信息
查看本期封面目录

遥感学报

1007-4619

11-3841/TP

14

2010,14(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn