生成模型学习的遥感影像半监督分类
以生成模型最大似然估计为例,引入结合已标记样本和未标记样本的半监督分类方法来解决遥感影像分类中的小样本问题,应用已有的少量已标记样本初始化一个分类器,结合大量未标记样本,通过递归计算的方式对分类器进行优化,直到包含所有样本的似然函数收敛到局部极大值.通过分析遥感影像待分类类别与影像中地物类型固有特征之间的关系,设计两个在不同生成模型假设下的分类实验.结果表明,未标记样本的参与可在很大程度上提高小样本条件下的影像分类精度,但两种样本的数量应保持一个适当的比例.最后通过与在解决小样本分类问题方面有独特优势的SVM方法的分类比较,发现在小样本情况下,本文方法具有更好的应用潜力.
遥感分类、半监督学习、EM算法
14
TP751(遥感技术)
国家自然科学基金;中国近海海洋综合调查与评价专项
2011-01-15(万方平台首次上网日期,不代表论文的发表时间)
1090-1104