基于LFDA和GA-ELM的高光谱图像地物识别方法研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11873/j.issn.1004-0323.2021.3.0587

基于LFDA和GA-ELM的高光谱图像地物识别方法研究

引用
高光谱图像的高维特性和波段间的高相关性,导致高光谱图像地物识别问题研究中,面临着数据量大、信息冗余的问题,降低了高光谱图像的分类识别精度.针对以上问题,提出了基于局部保留降维(Local Fisher Discriminant Analysis,LFDA)结合遗传算法(Genetic Algorithm,GA)优化极限学习机(Extreme Learning Machine,ELM)的高光谱图像分类方法.首先,采用LFDA对高光谱图像数据进行降维处理,消除信息冗余并保留局部邻域内主要特征;然后用GA优化ELM,对降维处理后的特征样本进行分类,提高高光谱图像的分类识别精度.将该方法应用于Salinas和Pavia University高光谱图像的地物识别问题研究,分类精度分别达到了98.56%和97.11%,由此验证了该方法的有效性.

高光谱图像;降维;极限学习机;分类识别

36

TP751.1(遥感技术)

云南省教育厅科学研究基金项目2018JS019

2021-09-23(万方平台首次上网日期,不代表论文的发表时间)

共7页

587-593

相关文献
评论
暂无封面信息
查看本期封面目录

遥感技术与应用

1004-0323

62-1099/TP

36

2021,36(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn