基于全极化SAR影像的海岛地物分类
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11873/j.issn.1004-0323.2019.3.0647

基于全极化SAR影像的海岛地物分类

引用
我国海岛众多且资源丰富,针对海岛地物复杂和难以采集训练样本的特点,在分析9种极化特征参数对海岛地物区分能力的基础上,提出了一种基于全极化SAR影像的海岛地物分类方法.该方法采用Freeman分解和Cloude-Pottier分解提取的极化特征与Shannon熵组成特征集,通过自编码器对原始特征进行学习重构,提取更具有可分性的深层特征,并利用主动学习选择最优价值的样本加入训练样本以提高分类器分类效果.通过对舟山群岛全极化SAR影像进行分类实验,结果表明:该方法能够对全极化SAR影像中的不同海岛地物进行有效区分,特别是引入Shannon熵后能明显提升海水、泥滩和沙滩的分类精度;基于主动深度学习的分类方法可以在样本有限的情况下得到比传统分类方法更好的分类结果.

极化SAR、极化目标分解、香农熵、主动学习、深度学习

34

TP79(遥感技术)

卫星测绘技术与应用国家测绘地理信息局重点实验室经费资助项目“面向滨海湿地的极化SAR影像特征提取与半监督分类研究”20175014612;浙江省流域水环境与健康风险研究重点实验室资助项目“基于极化SAR影像的滨海湿地分类研究”IWA-TER-KF-201702;国家自然科学基金项目“基于视觉注意机制的SAR图像小目标检测方法研究”41301449

2019-07-24(万方平台首次上网日期,不代表论文的发表时间)

共8页

647-654

相关文献
评论
暂无封面信息
查看本期封面目录

遥感技术与应用

1004-0323

62-1099/TP

34

2019,34(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn