基于地理加权的k-NN高分辨率遥感影像分类算法改进
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于地理加权的k-NN高分辨率遥感影像分类算法改进

引用
与中低分辨率相比,高分辨率遥感影像的信息比较丰富,在使用常规k-NN分类方法基于像元进行高分辨率遥感影像分类时会产生大量的“椒盐噪声”和地物类别错分.根据地理学第一定律,引入地统计模型,将地理权重加入到常规k-NN分类方法中,形成新的地理权重k-NN分类器(Geographically Weighted k-NN,GWk-NN).该方法首先通过条件概率函数计算出训练样本数据的空间分布特征,然后通过地统计模型对空间分布特征进行拟合,为每种地物选择合适的权重模型,这样既保留了遥感影像中地物的光谱特征,又融入了地物的空间特征,在一定程度上减少甚至消除了“椒盐噪声”,提高了分类精度.GWk-NN和常规k-NN分类器分析对比表明:GWk-NN分类方法提高了高分辨率影像的分类精度.

k-NN、空间特征、地理加权模型、GWk-NN

28

TP75(遥感技术)

国家自然科学基金项目40601074;江苏高校优势学科建设工程项目

2013-05-13(万方平台首次上网日期,不代表论文的发表时间)

共6页

97-102

相关文献
评论
暂无封面信息
查看本期封面目录

遥感技术与应用

1004-0323

62-1099/TP

28

2013,28(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn