一种加权词向量的混合网络文本情感分析方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1003-0972.2021.03.022

一种加权词向量的混合网络文本情感分析方法

引用
针对文本中关键信息被忽略以及分类准确率不高的问题,提出一种加权word2vec的卷积神经网络(CNN)与ATT-BiGRU混合神经网络情感分析模型.由于word2vec生成的词向量无法突出文本关键词的作用,因此引入词频-逆文档频率(TF-IDF)算法计算词汇权重值.然后,将加权运算后的词向量输入CNN与ATT-BiGRU混合模型提取隐含特征.该模型通过卷积神经网络(CNN)和基于注意力机制的双向门限循环单元(ATT-BiGRU)分别提取文本特征,以此来提高文本的表示能力.多组实验对比结果表明,与其他算法相比较,该模型的分类准确率最高且耗费时间代价小.

TF-IDF、卷积神经网络、双向门限循环单元、情感分析

34

TP391.1(计算技术、计算机技术)

国家自然科学基金;河南省教师教育课程改革研究项目

2021-07-21(万方平台首次上网日期,不代表论文的发表时间)

共6页

472-477

相关文献
评论
暂无封面信息
查看本期封面目录

信阳师范学院学报(自然科学版)

1003-0972

41-1107/N

34

2021,34(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn