基于多尺度LBP和复合核的高光谱图像分类方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1003-0972.2021.02.022

基于多尺度LBP和复合核的高光谱图像分类方法

引用
为了更好地利用高光谱图像的纹理特征信息,提出了一个基于多尺度LBP和复合核的高光谱图像分类方法.利用LBP的两个最佳尺度来提取高光谱图像的纹理特征,将得到的空间纹理信息输入高斯核函数中,得到两个空间核,与直接提取光谱信息得到的光谱核结合在一起组成一个复合核,将这个复合核输入支持向量机(Support Vector Machine,SVM)进行分类得到分类结果.结果表明,在Indian Pines和Pavia University这两个真实的数据集上分类精度分别达到0.9948和0.9918,明显优于其他同类杰出的高光谱图像分类方法.

高光谱图像、多尺度LBP、复合核、支持向量机(SVM)

34

TP751(遥感技术)

国家自然科学基金项目;河南省科技计划项目

2021-04-19(万方平台首次上网日期,不代表论文的发表时间)

共8页

300-307

相关文献
评论
暂无封面信息
查看本期封面目录

信阳师范学院学报(自然科学版)

1003-0972

41-1107/N

34

2021,34(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn