一种基于降噪自编码的组合分类算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1003-0972.2020.04.025

一种基于降噪自编码的组合分类算法

引用
针对传统分类学习算法的准确性现状进行了研究,提出了一种基于降噪自编码的组合分类算法(Ensemble Learning based on Denosing Autoencoder,ELDA).与Bagging、Adaboost以及Rotation Forest等传统的组合分类器学习方法不同,ELDA首先通过使用降噪自编码算法将数据集映射到新的特征空间,然后在此空间学习得到决策树作为基分类器,最后对数据集进行类别预测.通过与Bagging、Adaboost及Rotation Forest学习方法相比,结果表明:ELDA在预测精度上显著优于对比算法.

决策树、自编码、降噪自编码、组合学习

33

TP181(自动化基础理论)

国家自然科学基金项目;河南省科技计划项目;信阳师范学院研究生科研创新基金项目

2020-10-21(万方平台首次上网日期,不代表论文的发表时间)

共6页

657-662

相关文献
评论
暂无封面信息
查看本期封面目录

信阳师范学院学报(自然科学版)

1003-0972

41-1107/N

33

2020,33(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn