一种基于集合划分的鲁棒性自适应模糊聚类分割算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1003-0972.2019.01.026

一种基于集合划分的鲁棒性自适应模糊聚类分割算法

引用
模糊C均值算法(FCM)是图像分割最常用的算法之一,这种方法需要提前确定初始聚类中心和聚类数.为此,提出了一种新的自适应模糊聚类算法(AFCM),AFCM算法中构造的观察矩阵、判断矩阵和集合划分可以自动确定合适的聚类数.为了得到更好的图像分割效果,采用核距离作为相似性度量,提出了一种鲁棒性自适应模糊C均值算法(RAFCM).实验结果表明,与FCM算法相比,AFCM和RAFCM算法不仅能自动地确定聚类数目,还可以得到更好的图像分割质量.

模糊聚类、图像分割、矩阵、集合划分、核距离

32

TP391.4(计算技术、计算机技术)

国家自然科学基金项目61572417;河南省高校重点科研项目17A520012

2019-04-08(万方平台首次上网日期,不代表论文的发表时间)

共7页

146-152

相关文献
评论
暂无封面信息
查看本期封面目录

信阳师范学院学报(自然科学版)

1003-0972

41-1107/N

32

2019,32(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn