基于深度学习的高鲁棒性恶意软件识别研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于深度学习的高鲁棒性恶意软件识别研究

引用
提出了一种基于深度学习的高鲁棒性恶意软件识别算法,该算法利用软件的操作码序列来检测恶意软件.首先采用类信息增益进行特征选择,然后提出了基于启发式规则的图生成算法,并将图转换为矢量空间,最后应用基于堆叠自编码器的深度学习框架对恶意和正常软件进行分类.实验评估结果说明了与现有的算法相比,恶意软件识别算法具有较高的鲁棒性.

恶意软件识别、深度学习、图生成、鲁棒性

30

TP391(计算技术、计算机技术)

安徽省教育厅高等学校省级质量工程项目2018jyxm1328

2020-05-11(万方平台首次上网日期,不代表论文的发表时间)

共5页

117-121

相关文献
评论
暂无封面信息
查看本期封面目录

信阳农林学院学报

2095-8978

41-1433/S

30

2020,30(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn