基于MRF和水平集的图像分割方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于MRF和水平集的图像分割方法

引用
传统的水平集方法忽略了图像的局部邻域信息,使得水平集曲线易停止于噪声点,导致对含有大量噪声、灰度相近的目标难以分割,且分割结果依赖初始轮廓的选择.因此,本文提出了一种基于马尔科夫随机场(MRF)的自适应水平集图像分割方法.首先利用K-means聚类获得图像的原始先验信息;然后结合MRF获得局部邻域能量信息;最后将MRF能量函数加入水平集中,来约束水平集演化的结果,进而对含有噪声的灰度图像进行自适应分割.通过与一些效果较好的水平集算法进行对比实验,证明了本文方法能够获得更加精确、鲁棒性更好的分割结果.

水平集、MRF、K-means聚类

29

TP391(计算技术、计算机技术)

2019-07-24(万方平台首次上网日期,不代表论文的发表时间)

共5页

99-103

相关文献
评论
暂无封面信息
查看本期封面目录

信阳农林学院学报

2095-8978

41-1433/S

29

2019,29(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn