分段时间注意力时空图卷积网络的动作识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.20009/j.cnki.21-1106/TP.2022-0366

分段时间注意力时空图卷积网络的动作识别

引用
得益于图卷积网络(GCN)对于处理非欧几里得数据有着非常好的效果,同时人体的骨骼点数据相对于RGB视频数据具有更好的环境适应性和动作表达能力.因此,基于骨骼点的人体动作识别方法得到了越来越多的关注和研究.将人体骨骼建模为时空图形的数据进行基于GCN模型的动作识别取得了显著的性能提升,但是现有的基于GCN的动作识别模型往往无法捕获动作视频流中的细节特征.针对此问题,本文提出了一种基于分段时间注意力时空图卷积骨骼点动作识别方法.通过将数据的时间帧进行分段处理,提取注意力,来提高模型对细节特征的提取能力.同时引入协调注意力模块,将位置信息嵌入注意力图中,这种方法增强了模型的泛化能力.在NTU-RGBD数据集和Kinetics-Skeleton数据集上的大量实验表明,本文所提模型可以获得比目前多数文献更高的动作识别精度,有更好的识别效果.

动作识别、图卷积网络、分段时间注意力、协调注意力

45

TP391(计算技术、计算机技术)

国家自然科学基金;国家自然科学基金;河南省科技攻关项目

2024-02-03(万方平台首次上网日期,不代表论文的发表时间)

共7页

62-68

相关文献
评论
暂无封面信息
查看本期封面目录

小型微型计算机系统

1000-1220

21-1106/TP

45

2024,45(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn