10.20009/j.cnki.21-1106/TP.2021-0743
点线特征自适应融合室内SLAM算法
传统的视觉同时定位与地图创建(SLAM)依赖于点特征来估计相机位姿.然而在室内环境中存在大量低纹理区域,使得提取足够多的点特征变得困难.此外,当相机抖动剧烈或转向过快时,基于点特征的SLAM系统也并不鲁棒.针对上述问题,本文提出了一种基于RGB-D的点线特征融合SLAM算法,利用点特征和线特征的优点,在困难环境下获得了鲁棒的结果.首先,提出了一种基于特征丰富度的特征提取策略.解决在模糊和低纹理区域内提取特征困难的问题.其次,设计了一种点线特征关联图,优化线特征匹配效果.该方法不仅参考了线特征之间的相似关系,还考虑了点线特征之间的几何关系.最后,在构建光束法平差的成本函数时建立自适应模型,实现点线双模态特征的"无缝融合".本文分别在两个公开数据集和室内真实场景中进行了算法评估,并与其他先进算法对比.结果表明本文提出的算法具有更好的整体性能.
机器视觉、同时定位与地图创建、点线特征、自适应模型、低纹理
44
TP391(计算技术、计算机技术)
国家自然科学基金;天津市科技计划项目
2023-05-23(万方平台首次上网日期,不代表论文的发表时间)
共8页
1015-1022