融合CBAM的YOLOv4轻量化检测方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.20009/j.cnki.21-1106/TP.2021-0681

融合CBAM的YOLOv4轻量化检测方法

引用
基于深度学习的目标检测算法应用于无人机视觉中,会极大提升无人机的场景理解能力,但模型参数量和计算量巨大,难以应用于移动端或嵌入式平台.因此本文提出了一种效果较好的轻量级实时检测模型,采用YOLOv4模型网络作为主要参考模型,使用MobileNet替换主干网络,并通过添加CBAM注意力机制以及Soft-NMS后处理策略来提高模型的准确性.选用PASCAL VOC数据集来测试所提出的轻量级YOLOv4模型,结果显示参数量只有原模型的一半,但速度FPS提升了 26.48,精度mAP只下降了 0.52%.将所提出的轻量化YOLOv4模型部署Nvidia Jetson TX2低功耗系统以及树莓派上,飞行试验显示在TX2上模型FPS达到了 21.8,是原始的YOLOv4的4.74倍,将本算法部署到无人机装载的嵌入式平台上,能够对航拍视野中的车辆目标进行实时识别和定位.

无人机图像、YOLOv4、MobileNet、CBAM、柔性非极大抑制策略

44

TP391(计算技术、计算机技术)

国家自然科学基金;国家自然科学基金;吉林省科技发展计划重点项目;吉林省科技发展计划重点项目;省院合作科技专项资金项目;中科院轻型动力创新院重点基金项目;中国科学院青年创新促进会项目

2023-05-23(万方平台首次上网日期,不代表论文的发表时间)

共7页

1008-1014

相关文献
评论
暂无封面信息
查看本期封面目录

小型微型计算机系统

1000-1220

21-1106/TP

44

2023,44(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn