具有不充分信息的高维时间序列因果关系网络研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.20009/j.cnki.21-1106/TP.2021-0697

具有不充分信息的高维时间序列因果关系网络研究

引用
具有不充分信息的高维时间序列因果关系网络学习重要且困难,信息不充分会导致许多因果关系丢失,从而造成传递信息的不完整.本文首先提出了汇聚递减变量排序方法,并基于局部贪婪搜索-打分进行因果关系网络学习,来降低对数据量的需求和提高学习效率与可靠性;再通过建立信息提取变量来获取变量组的压缩信息,以弥补由弱因果关系的缺失所引起的传递信息丢失和实现高维数据的降维;最后基于递归汇聚结构和后验分布抽样识别准确率分别建立时间序列变量之间的影响程度计算、影响的敏感性计算和汇聚与扩散影响计算方法,并使用宏观经济时间序列数据进行相应的实验验证与分析.

时间序列、贝叶斯网络、影响程度、敏感性、汇聚与扩散

44

TP181(自动化基础理论)

国家社会科学基金18BTJ020

2023-05-23(万方平台首次上网日期,不代表论文的发表时间)

共10页

981-990

相关文献
评论
暂无封面信息
查看本期封面目录

小型微型计算机系统

1000-1220

21-1106/TP

44

2023,44(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn