基于辅助熵减的神经常微分方程入侵检测模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1671-1122.2022.06.001

基于辅助熵减的神经常微分方程入侵检测模型

引用
为了提高深度学习模型入侵检测任务的检测效率和分类的准确性,文章提出一种基于辅助熵减的神经常微分方程(E-ODENet)入侵检测模型.该入侵检测模型通过参数常微分方程定义连续的隐藏状态,不需要再分层传播梯度与更新参数,减少了内存的消耗,极大地提高了效率.使用信息瓶颈进行特征降维,提取与分类任务相关的主要信息,同时使用标签平滑和熵减损失来提高模型的泛化能力和准确性.在NSL-KDD数据集上进行训练和测试,测试得到的检测准确率为99.76%,证明该模型优于其他入侵检测模型.

入侵检测、熵减损失、常微分方程、NSL-KDD

TP309(计算技术、计算机技术)

国家自然科学基金61801008

2022-07-04(万方平台首次上网日期,不代表论文的发表时间)

共8页

1-8

相关文献
评论
暂无封面信息
查看本期封面目录

信息网络安全

1671-1122

31-1859/TN

2022,(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn