基于LSTM-Attention的内部威胁检测模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1671-1122.2022.02.001

基于LSTM-Attention的内部威胁检测模型

引用
信息被内部人员非法泄露、复制、篡改,会给政府、企业造成巨大的经济损失.为了防止信息被内部人员非法窃取,文章提出一种基于LSTM-Attention的内部威胁检测模型ITDBLA.首先,提取用户的行为序列、用户行为特征、角色行为特征和心理数据描述用户的日常活动;其次,使用长短期记忆网络和注意力机制学习用户的行为模式,并计算真实行为与预测行为之间的偏差;最后,使用多层感知机根据该偏差进行综合决策,从而识别异常行为.在CERT内部威胁数据集上进行实验,实验结果表明,ITDBLA模型的AUC分数达0.964,具有较强的学习用户活动模式和检测异常行为的能力.

长短期记忆;注意力机制;用户和实体行为分析;内部威胁检测

TP309(计算技术、计算机技术)

国家自然科学基金;国家重点研发计划;河北省科技厅科技计划

2022-02-28(万方平台首次上网日期,不代表论文的发表时间)

共10页

1-10

相关文献
评论
暂无封面信息
查看本期封面目录

信息网络安全

1671-1122

31-1859/TN

2022,(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn