基于不完全信息的深度学习网络入侵检测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1671-1122.2019.06.007

基于不完全信息的深度学习网络入侵检测

引用
在网络数据的采集与传输过程中,经常面临无法完全采集、信息丢失等情况.在不完全信息条件下的网络入侵检测成为网络异常检测的难题.为解决不完全信息入侵检测准确率的问题,结合网络数据的特点,文章提出一种基于不完全信息的深度学习网络入侵检测模型(NIDII-DL),借助多层感知神经网络构建深度学习模型,实现信息不完全条件下的入侵检测.实验结果表明,NIDII-DL方法在不完全信息条件下的分类精度高于其他算法,且对信息不完全的敏感度更低.

不完全信息、网络入侵检测、多层感知、特征量

TP309(计算技术、计算机技术)

国家自然科学基金61841701;福建省教育厅科技项目JAT160822

2019-07-25(万方平台首次上网日期,不代表论文的发表时间)

共8页

53-60

相关文献
评论
暂无封面信息
查看本期封面目录

信息网络安全

1671-1122

31-1859/TN

2019,(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn