恶意代码聚类中的特征选取研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1671-1122.2016.09.013

恶意代码聚类中的特征选取研究

引用
近几年,随着恶意代码数量的飞速增长,将聚类算法用于恶意代码新家族检测受到越来越多安全厂商的青睐。恶意代码聚类将具有相似行为或结构的样本划分到同一簇中,选取不同的特征将影响恶意代码的聚类质量。文章首先选取恶意代码聚类研究中常用的特征进行讨论比较。现有大部分研究均选取单一特征向量进行聚类,而任何单一特征向量均难以完整描述恶意代码的全部性质。针对该问题,文章接着提出利用多特征向量对的方法进行恶意代码聚类,并根据聚类结果定义特定的指标对选用的特征进行评价。最后,文章结合DBSCAN聚类算法对各种特征以及特征间的组合进行实验,结果表明,采用多特征向量对的聚类效果要优于单一特征向量。

特征选取、恶意代码、聚类分析

TP309(计算技术、计算机技术)

国家自然科学基金61472437

2016-11-04(万方平台首次上网日期,不代表论文的发表时间)

共5页

64-68

相关文献
评论
暂无封面信息
查看本期封面目录

信息网络安全

1671-1122

31-1859/TN

2016,(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn