基于KPCA组合核函数SVM的网络危险因素识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1671-1122.2010.02.019

基于KPCA组合核函数SVM的网络危险因素识别

引用
本文在传统的支持向量机(SVM)分类算法中采用核主成分分析(KPCA)对网络数据进行特征抽取,将高维输入特征转化为新的低维特征;并对SVM的核函数进行改进,采用多项式核函数和径向基核函数混合的组合核函数,具有良好的学习能力和外推能力.最后在KDDCUP1999数据集上进行实验,证明了本文方法能够有效的减少学习样本数及训练时间,在网络危险因素识别中具有更高的检测率和更强的泛化能力.

支持向量机、核主成分分析、特征抽取、组合核函数

TP393.08(计算技术、计算机技术)

2010-04-21(万方平台首次上网日期,不代表论文的发表时间)

共3页

45-46,60

相关文献
评论
暂无封面信息
查看本期封面目录

信息网络安全

1671-1122

31-1859/TN

2010,(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn