基于有向网络非对等关系的异常子图识别算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19363/J.cnki.cn10-1380/tn.2022.01.06

基于有向网络非对等关系的异常子图识别算法

引用
图异常检测将实体间通联关系抽象为复杂网络形式表示,旨在利用结构特征识别网络中存在的异常行为与实体,具有关系客观存在且异常可解释较强的优点.目前该类方法主要以无向网络结构为基础提取特征,以达到识别异常的目的,主要关注于连边层面异常结构,对于由集体异常行为构成的异常子图识别问题研究仍较少,缺少对行为方向异常协同关系的分析.传统方法通过提取节点邻域结构特征构建特征空间,并根据节点邻域结构在特征空间中的映射点距离发现离群点,虽可发现结构具有明显差异的异常子图,但忽略了网络结构中节点的实际物理联系,以及行为由于主客体不同所导致个体间关系非对等的实际情况.针对该问题,本文提出了基于有向网络非对等关系的异常子图识别算法,通过连边方向信息提取节点间行为方向特征,度量节点间关系非对等强度,后转化为子图密度形式表示,结合基于密度的异常识别方法挖掘异常,保留了实际物理联系.通过在4种不同异常类型的合成数据集与存在实际异常的真实数据集上进行实验,验证了其具有较高的异常识别精度与鲁棒性.

图异常检测;有向网络;非对等关系;异常子图

7

TP393(计算技术、计算机技术)

2022-03-03(万方平台首次上网日期,不代表论文的发表时间)

共16页

84-99

相关文献
评论
暂无封面信息
查看本期封面目录

信息安全学报

2096-1146

10-1380/TN

7

2022,7(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn