基于HOG-SVM的跳频信号检测识别算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19363/J.cnki.cn10-1380/tn.2020.05.06

基于HOG-SVM的跳频信号检测识别算法

引用
针对非合作通信场景下的跳频信号自动化检测识别问题,本文提出了一种基于方向梯度直方图与支持向量机的跳频信号检测识别算法.该算法将无线通信信号转化为包含时间、频率和幅度的时频瀑布图,采用方向梯度直方图特征提取算法将不同跳频序列在瀑布图上产生的独特结构特征提取出来.然后利用支持向量机将特征序列映射到高维空间,通过寻找最大间隔分离超平面,实现跳频信号的检测与多种跳频序列的识别,并依此建立跳频信号检测识别原型系统.最后在室内多径信道环境下进行了测试验证,该算法能够完全自动化的精确检测到开放电磁环境下的跳频信号并且能够实现对多种跳频序列的识别.在信干噪比不超过20dB时,针对不同跳频序列的平均识别正确率能够达到98.01%.

跳频信号、检测识别、方向梯度直方图、支持向量机

5

TN914.41

本课题得到中国科学院战略性先导 C 类No.XDC02000000

2020-07-23(万方平台首次上网日期,不代表论文的发表时间)

共16页

62-77

相关文献
评论
暂无封面信息
查看本期封面目录

信息安全学报

2096-1146

10-1380/TN

5

2020,5(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn