基于加权主成分分析的投资组合优化
金融资产收益率满足因子模型已成为实证资产定价领域的共识,因此在面临均值-方差(mean-variance,MV)投资组合优化问题时,基于因子模型构建期望收益率和方差-协方差矩阵估计量具有更好的经济学理论支撑,从而有助于提高输入参数的估计精度,改进MV策略的绩效表现.基于这一考虑,文章提出了一种可同时兼顾期望收益率和方差-协方差矩阵估计误差的加权主成分分析(weighted principal component analysis,WPCA)算法,该算法在经典主成分分析的目标函数中引入了收益率一阶矩估计误差的加权项,从而克服了经典主成分分析提取的因子在解释收益率一阶矩时的局限性.进一步文章基于WPCA算法提取的统计因子构建两个参数的估计量,然后将改进估计量带入MV策略中,得到WPCA-MV策略.实证上,文章基于A股市场199101-202209月5138只个股的月频收益率数据对WPCA-MV策略的样本外绩效表现进行评估,结果显示,与常见的投资组合策略MV,GMV,EW,BS,TZ等策略相比,文章所提的WPCA-MV策略在平均收益率,标准差,夏普率,累计收益率和换手率指标上均取得了优异的样本外表现,且这种优越性在美股75个因子数据集上同样成立,表明文章结论具有较好的稳健性.
投资组合优化、主成分分析、潜在因子模型
43
TP309;F832.51;F224.0
2023-08-30(万方平台首次上网日期,不代表论文的发表时间)
共16页
1888-1903