大数据下广义线性模型的参数估计算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

大数据下广义线性模型的参数估计算法

引用
在大数据下,全样本量很大,未知参数极大似然估计的计算变得十分困难.文章主要对于广义线性模型参数的极大似然估计研究一种有效的计算方法.首先证明了随机抽样算法下的估计量的渐近正态性,由此提出了入样概率的选取准则及两步随机抽样算法.模拟研究表明,绝大部分情况下,运用文章提出的方法所得到广义线性模型极大似然估计量的均方误差低于与之对比的简单随机抽样.

大数据、广义线性模型、两步随机抽样算法、渐近正态性、入样概率

40

上饶师范学院校级自选课题201905

2020-07-16(万方平台首次上网日期,不代表论文的发表时间)

共14页

927-940

相关文献
评论
暂无封面信息
查看本期封面目录

系统科学与数学

1000-0577

11-2019/O1

40

2020,40(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn