AdaBoost-PSO-LSTM网络实时预测机动轨迹
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12305/j.issn.1001-506X.2021.06.23

AdaBoost-PSO-LSTM网络实时预测机动轨迹

引用
针对自主空战中轨迹预测难以同时保持高预测精度和短预测时间的问题,提出一种自适应增强的粒子群优化长短期记忆网络预测方法.首先,建立三自由度无人机动力学模型,解决机动轨迹的数据来源问题.其次,分析长短期记忆网络,并引入在线预测的滑动模块输入矩阵,利用粒子群优化算法代替传统基于时间的反向传播算法进行网络内部权值更新;同时为解决优化算法非定向性问题,提出数据共享方法.然后,为进一步提高预测精度,采用自适应增强算法搭建外框架,通过控制弱预测器的数量平衡预测精度与预测时间.最后,在一段变化较为频繁的轨迹进行预测,与5种神经网络预测方法进行比较,结果表明所提方法能够较好地满足精度和时间要求.

轨迹预测、粒子群优化长短期记忆网络、动力学模型、无人机

43

V247.5(航空仪表、航空设备、飞行控制与导航)

航空科学基金201951096002

2021-06-24(万方平台首次上网日期,不代表论文的发表时间)

共8页

1651-1658

相关文献
评论
暂无封面信息
查看本期封面目录

系统工程与电子技术

1001-506X

11-2422/TN

43

2021,43(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn