基于演化网络模型的箱粒子CPHD群目标跟踪
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1001-506X.2018.05.01

基于演化网络模型的箱粒子CPHD群目标跟踪

引用
提出一种基于演化网络模型和区间分析的群目标势概率假设密度(cardinalized probability hypothesis density,CPHD)滤波算法.针对传统的粒子CPHD群目标跟踪算法中粒子数多、运算量大的问题,采用箱粒子实现CPHD滤波器,减少了粒子数,降低了运算量.算法通过对群目标状态采用CPHD滤波进行预测更新,并使用所获得的群信息修正群内目标的状态,进而实现对群质心的跟踪和群目标的势估计.仿真对比实验表明,所提算法在达到与传统算法相似估计性能的条件下,大幅降低了算法的运算量,同时在强杂波环境下也具有更为突出的优势.

群目标跟踪、箱粒子滤波、区间分析、演化网络模型、势概率假设密度滤波

40

TN953

国家自然科学基金61372003资助课题

2018-05-21(万方平台首次上网日期,不代表论文的发表时间)

共7页

961-967

相关文献
评论
暂无封面信息
查看本期封面目录

系统工程与电子技术

1001-506X

11-2422/TN

40

2018,40(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn